せん断に伴う断面変形を考慮した梁理論の 一般化に関する検討

鄭勛 構造強度学研究室 2019年2月7日

理論基礎

11 1

Timoshenko 梁理論による梁の せん断変形を断面内で一定と仮定

→ 断面は平面ではなくなり変形する

FEAによるせん断補正係数の研究

<u>せん 町 剛 生の 研 九</u> せん 断補正係数で 断面 変形を考慮	2001	Gruttmann: エネルギの等価性に 基づくせん断補正係数
→ せん断力とせん断変形を 比例と仮定	2010	Dong: そり変位に基づく せん断補正係数
	2018	斉木:均質化理論に基づく非均質 断面のせん断補正係数

理論基礎

Timoshenko 梁理論による梁の せん断変形を断面内で一定と仮定 → 断面は平面ではなくなり変形する

<u>せん断剛性の研究</u>

せん断補正係数で断面変形を考慮 →せん断力とせん断変形を比例と仮定

問題点

連続梁の中間支持点で,せん断力が不連続に 変化する場合でも断面変形が連続的になる

→ せん断変形とせん断力を比例しない

本研究ではせん断変形をせん断力と独立に考慮する

面外せん断とせん断遅れによる断面変形を考慮した梁理論

3/13

断面変形の 3 次元図

X₁軸方向変位:

 $u_1 =$ 高さ × 回転 + $f \times g$ x_1 曲げ変形 断面变形 $f(x_2, x_3)$ x_3 u_3 f:面外せん断にともなう断面のゆがみモード gg :断面変形の大きさ θ u_1 梁の断面回転 本提案: $u_1 = x_3 \left(\widetilde{\gamma}(x_1) - \frac{du_3(x_1)}{dx_1} \right) + f(x_2, x_3)g(x_1)$ $f(x_2, x_3)$ g

面外せん断ひずみ

中間発表からの変更点

面外せん断による断面変形を考慮した梁理論

$$u_1 = x_3 \left(\widetilde{\gamma}(x_1) - \frac{du_3(x_1)}{dx_1} \right) + f(x_3)g(x_1)$$

面外せん断とせん断遅れによる断面変形を考慮した梁理論

$$u_{1} = x_{3} \left(\widetilde{\gamma}(x_{1}) - \frac{du_{3}(x_{1})}{dx_{1}} \right) + f(x_{2}, x_{3})g(x_{1})$$

せん断遅れによる断面変形分布 関数fのx₂方向分布も考える

梁の変分問題

停留条件るП=0から微分方程式(3式)導出

 $\begin{bmatrix} \overline{\mathbf{x}} - \mathbf{y} \mathbf{y} \mathbf{b} \\ \mathbf{y} \mathbf{b} \mathbf{c} \mathbf{v} \mathbf{d} \\ \mathbf{y} \mathbf{g} \mathbf{g} \mathbf{h} \end{bmatrix} - K_b \frac{d\theta}{dx_1} - R_1 \frac{dg}{dx_1} + M = 0$ $\begin{bmatrix} \overline{\mathbf{x}} \mathbf{b} \mathbf{h} \\ \mathbf{y} \mathbf{g} \mathbf{g} \mathbf{h} \end{bmatrix} K_s \widetilde{\gamma} - K_b \frac{d^2 \theta}{dx_1^2} - R_1 \frac{d^2 g}{dx_1^2} + R_4 g = 0$ $\begin{bmatrix} \overline{\mathbf{y}} \mathbf{g} \mathbf{h} \end{bmatrix} K_s \widetilde{\gamma} - K_b \frac{d^2 \theta}{dx_1^2} - R_2 \frac{d^2 g}{dx_1^2} + R_4 \widetilde{\gamma} + R_3 g = 0$ $\begin{bmatrix} \overline{\mathbf{y}} \mathbf{g} \mathbf{g} \mathbf{h} \end{bmatrix} - R_1 \frac{d^2 \theta}{dx_1^2} - R_2 \frac{d^2 g}{d^2 x_1} + R_4 \widetilde{\gamma} + R_3 g = 0$

断面 パラメータ $K_s \coloneqq \int_A GdS$ $K_b \coloneqq \int_A Ex_3^2 dS$ $R_1 \coloneqq \int_S Ex_3 fdS$ $R_2 \coloneqq \int_S Ef^2 dS$ $R_3 \coloneqq \int_S G\left\{ \left(\frac{\partial f}{\partial x_2} \right)^2 + \left(\frac{\partial f}{\partial x_3} \right)^2 \right\} dS$ $R_4 \coloneqq \int_S G\left(\frac{df_1}{dx_3} \right) dS$ $\theta \coloneqq \tilde{\gamma} - \frac{du_3}{dx_1}$

梁の代表体積要素 (周期境界)のFEM解析

7/13

解析対象: 等分布荷重を与える片持ち梁

Tiomshenko梁理論より, 本手法のたわみは**solid**の たわみに近い

面外せん断とせん断遅れによる断面変形を考慮した梁要素

本手法に基づく独自の梁要素を定式化した

9/13

離散化手法の妥当性を確認

11/13

まとめ

- ・面外せん断とせん断遅れに伴う断面変形を考慮した
 梁理論を構築した.
- ⇒ 断面変形に高さ方向分布も再現可能となった.
- 本手法は梁の支点付近の断面変形の拘束を正確に再現できた。
 ⇒せん断力が軸方向に変化する場合でも
 断面変形の連続性が満たされる
 - •面外せん断とせん断遅れを考慮した梁要素を開発した.
- ⇒ 半解析解への収束を確認した. 連続梁におけるずれ変位計算を行い, solid要素に近い結果が得られた.

	$\frac{K_{a}}{\ell}$	0	0	0	$-\frac{K_a}{\ell}$	0	0	0	0
		$\frac{12K_b}{\ell^3}$	$-\frac{6K_b}{\ell^2}$	0	0	$-\frac{12K_0}{\ell^3}$	$-\frac{6K_b}{\ell^2}$	0	$\frac{12K_b}{\ell^2}$
			$\frac{4K_b}{\ell}$	$\frac{R_1}{\ell}$	0	$\frac{6K_b}{\ell^2}$	$\frac{2K_b}{\ell}$	$-\frac{R_1}{\ell}$	$-\frac{6K_b}{\ell}$
				$\frac{R_2}{\ell} + \frac{R_3\ell}{3}$	0	0	$-\frac{R_1}{\ell}$	$-\frac{R_2}{\ell} + \frac{R_3\ell}{6}$	$\frac{R_4\ell}{2}$
=					$\frac{K_a}{\ell}$	0	0	0	0
						$\frac{12K_b}{\ell^3}$	$\frac{6K_b}{\ell^2}$	0	$-\frac{12K_b}{\ell^2}$
							$\frac{4K_b}{\ell}$	$\frac{R_1}{\ell}$	$-\frac{6K_b}{\ell}$
								$\frac{R_2}{\ell} + \frac{R_3\ell}{3}$	$\frac{R_4\ell}{2}$
	Symm.								$K_s\ell+\tfrac{12K_b}{\ell}$