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A B S T R A C T

The virtual element method is an approximate solution method for partial differential equations
that does not require the explicit definition of interpolation functions for test and trial functions
in the elements. Accordingly, it can easily handle polygonal and polyhedral elements, including
nonconvex shapes, and it has begun to attract attention as a generalization of the finite element
method. As one of the two terms that constitute the internal virtual work, the stabilization term
has received little attention, and methods for determining the stabilization parameter have not
been proposed to date. Thus, in this study, we focus on the stabilization parameter of the
stabilization term. Through a series of eigenvalue analyses of the stiffness matrices, we show
that the stabilization parameter corresponds to the energy of the mode not included in the
consistency term. From this consideration, we propose a method for setting the stabilization
parameter appropriately.

1. Introduction

The virtual element method (VEM), proposed by Beirão et al. [1], is an approximate solution method for partial differential
equations. Similar to the finite element method (FEM), the VEM discretizes the weak form of partial differential equations using the
Galerkin method. However, unlike the FEM, the VEM does not require the explicit definition of interpolation functions within the
elements, allowing it to handle arbitrary polygons and polyhedra elements.

Consequently, the VEM has gained attention as a generalization of the FEM. In fact, within less than a decade since the proposal
of the VEM theory, it has been applied to various problems. Beirão et al. [2] developed the VEM for two-dimensional linear elastic
problems, and Gain et al. [3] extended the theory to three-dimensional problems. In addition, Chi et al. [4] applied the VEM to the
finite deformation theory, and Artioli et al. [5] developed nonelastic problems using the VEM. Furthermore, the application of the
VEM has been extended to problems, such as topology optimization [6], contact analysis [7], and fracture analysis [8].

As shown in Section 2, the internal virtual work of the VEM comprises two terms: the consistent term and the stabilization term.
In particular, the stabilization term is commonly scaled using a stabilization parameter. However, although studies have attempted
to tune the stabilization parameter from the mathematical viewpoint [9–13], appropriate methods for tuning the stabilization
parameter from the physical and practical aspects have not been established. Therefore, in this study, focusing on two-dimensional
linear elastic problems, we clarify the physical significance of the consistency and stabilization terms in the virtual element stiffness
matrix for four-node quadrilateral elements through eigenvalue analysis. In addition, we propose a methodology for determining
the optimal stabilization parameters.
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Fig. 1. (a) Physical problem in 2D, and (b) spatial discretization.

2. Formulation of the virtual element method

2.1. Governing equation

In the continuous domain, 𝛺 ⊂ R2, with a body force, 𝒇 , acting on 𝛺 as shown in Fig. 1(a), consider the linear elastic boundary
value problem. The boundary, 𝛤 , consists of the Dirichlet boundary (𝛤𝐷) and the Neumann boundary (𝛤𝑁 ). The equilibrium equation,
ompatibility condition, and constitutive equation for a linear elastic material are given by

𝝏T𝝈 + 𝒇 = 𝟎 in 𝛺, (1)
𝜺(𝒖) = 𝝏𝒖 in 𝛺, (2)
𝝈 = 𝑪𝜺 in 𝛺, (3)

where 𝝏 is the differential operator, 𝒖 is the displacement vector, 𝝈 is the Cauchy stress, 𝜺 is the small strain, and 𝑪 is the elastic
tiffness tensor. The boundary conditions are given by

𝒖 = �̄� on 𝛤𝐷, (4)
𝒕 ∶= 𝒎𝝈 = �̄� on 𝛤𝑁 , (5)

here, 𝒎 is the matrix expressed as

𝒎 =
[

𝑛𝑥 0 𝑛𝑦
0 𝑛𝑦 𝑛𝑥

]

. (6)

pplying the virtual work principle, the weak form of the governing equation in terms of 𝒖 ∈  is given as

𝑎 (𝒖, 𝒗) = 𝐿 (𝒗) ∀𝒗 ∈  , (7)

where  ∶=
(

1
0 (𝛺)

)2 is the space of admissible displacement fields, and 𝒗 represents the virtual displacement belonging to  .
unctions 𝑎 and 𝐿 represent the internal virtual work and the external virtual work, respectively, and are defined as follows:

𝑎 (𝒖, 𝒗) = ∫𝛺
𝜺(𝒗)T𝑪𝜺(𝒖),d𝛺 (8)

𝐿 (𝒗) = ∫𝛺
𝒗T𝒇d𝛺 + ∫𝛤𝑁

𝒗T �̄�d𝛤𝑁 . (9)

.2. Formulation of the virtual element method

Divide domain 𝛺 into nonoverlapping arbitrary-shaped polygons, 𝐸, as shown in Fig. 1(b). In this case, each polygon, 𝐸, is
eferred to as an element, and the number of edges, 𝑒, of 𝐸 is denoted by 𝑚. Further, ℎ(𝐸) represents the element-wise defined
iscretized admissible displacement field, defined as ℎ(𝐸) =

[

ℎ(𝐸)
]2. Here, ℎ(𝐸) is a scalar space given by

ℎ(𝐸) =
{

𝑣ℎ ∈ 1(𝐸) | 𝛥𝑣ℎ ∈ 𝑘−2(𝐸), 𝑣ℎ|𝑒 ∈ 𝑘(𝑒) ∀𝑒 ∈ 𝜕𝐸
}

, (10)

where 𝛥 is the Laplacian; 𝑘−2(𝐸) is the space of polynomials of degree 𝑘− 2 at most, defined on element 𝐸; and 𝑘(𝑒) is the space
2

of polynomials of degree 𝑘 at most, defined on edge 𝑒 of the element.
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According to the standard formulation of the Virtual Element Method (VEM), such as that presented in Artioli et al. [14], the
nternal virtual work of element 𝐸 can be expressed as

𝑎𝐸
(

𝒖ℎ, 𝒗ℎ
)

= 𝑎𝐸
(

𝛱𝑑𝒖ℎ,𝛱𝑑𝒗ℎ
)

+ 𝑎𝐸
(

𝒖ℎ −𝛱𝑑𝒖ℎ, 𝒗ℎ −𝛱𝑑𝒗ℎ
)

, (11)

where the first term on the right-hand side denotes the consistent term, the second term is the stabilization term, and 𝛱𝑑 ∶ ℎ(𝐸) →

 𝑘(𝐸) is the projection operator. Here, because the stabilization term cannot be exactly computed, a positive definite symmetric
bilinear form, 𝑆𝐸 (𝒖ℎ, 𝒗ℎ), is employed for the formulation of the internal virtual work for element 𝐸. Consequently, the internal
virtual work for element 𝐸 is expressed as follows:

𝑎ℎ𝐸
(

𝒖ℎ, 𝒗ℎ
)

= 𝑎𝐸
(

𝛱𝑑𝒖ℎ,𝛱𝑑𝒗ℎ
)

+ 𝑆𝐸
(

𝒖ℎ −𝛱𝑑𝒖ℎ, 𝒗ℎ −𝛱𝑑𝒗ℎ
)

. (12)

2.3. Existence and uniqueness of the solution

For the solution of Eq. (7) to exist uniquely, it is required that for any 𝒑 ∈  𝑘(𝐸) and 𝒗ℎ ∈ ℎ(𝐸), the following equality holds:

𝑎ℎ𝐸
(

𝒑, 𝒗ℎ
)

= 𝑎𝐸
(

𝒑, 𝒗ℎ
)

, (13)

and for any 𝒗ℎ ∈ ℎ(𝐸), there must exist positive constants 𝛼∗ and 𝛼∗, not dependent on element 𝐸 or element size ℎ, that satisfy
he following inequality:[1]

𝛼∗𝑎𝐸
(

𝒗ℎ, 𝒗ℎ
)

≤ 𝑎ℎ𝐸
(

𝒗ℎ, 𝒗ℎ
)

≤ 𝛼∗𝑎𝐸
(

𝒗ℎ, 𝒗ℎ
)

. (14)

he former condition is referred to as k-consistency, and the latter as stability.
For simplicity, the formulations of the consistent and stabilization terms for 𝑘 = 1 are described. In this case, for an 𝑚-sided

olygonal element, the dimension of ℎ(𝐸) becomes 2𝑚.

.4. Formulation of the consistent term

For any function 𝜺𝑃 ∈  0(𝐸)2×2sym using the projection 𝛱𝜀 ∶ ℎ(𝐸) →  0(𝐸)2×2sym that satisfies

∫𝛺𝐸

(

𝜺(𝒖ℎ) −𝛱𝜀(𝒖ℎ)
)T 𝜺𝑃 = 0, (15)

he consistent term in Eq. (12) can be expressed as

𝑎𝐸
(

𝛱𝑑𝒖ℎ,𝛱𝑑𝒗ℎ
)

= ∫𝛺𝐸

[

𝛱𝜀(𝒗ℎ)
]T 𝑪𝛱𝜀(𝒖ℎ)d𝛺𝐸 , (16)

where 𝛱𝜀(𝒖ℎ) is the best approximation of strain 𝜺(𝒖ℎ) in the 0th-order polynomial space  0(𝐸)2×2sym. 𝛱𝜀(𝒖ℎ) can be represented as

𝛱𝜀(𝒗ℎ) = 𝑵𝑃 𝝅𝜀�̃�, (17)

where �̃� ∈ R2𝑚 is the nodal displacement vector of 𝒗ℎ ∈ ℎ(𝐸) expressed in basis 𝑵𝑉 of ℎ(𝐸), and 𝝅𝜀 ∈ R3×2𝑚 is the basis
ransformation matrix from ℎ(𝐸) to  0(𝐸)2×2sym. Since the polynomial space,  0(𝐸)2×2sym, is a three-dimensional space represented by

 0(𝐸)2×2sym = span

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1
0
0

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

0
1
0

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

0
0
1

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (18)

ts basis, 𝑵𝑃 , is given by

𝑵𝑃 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

. (19)

y substituting Eq. (17) into Eq. (15) and rearranging the equation, we obtain

𝝅𝜀 = 𝑮−1𝑩, (20)

here 𝑮 and 𝑩 are defined as

𝑮 = ∫𝛺𝐸

(

𝑵𝑃 )T 𝑵𝑃 d𝛺𝐸 , (21)

𝑩 = ∫𝛤𝐸

(

𝒎𝑵𝑃 )T 𝑵𝑉 d𝛤𝐸 , (22)

respectively. Using Eqs. (20) and (17), 𝛱𝜀(𝒗ℎ) can be expressed as
𝜀 ℎ 𝑃 −1 ̃
3

𝛱 (𝒗 ) = 𝑵 𝑮 𝑩𝒗. (23)
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Thus, the consistent term in Eq. (16) becomes

∫𝛺𝐸

[

𝛱𝜀(𝒗ℎ)
]T 𝑪𝛱𝜀(𝒖ℎ)d𝛺𝐸 = (�̃�)T 𝑲𝐶 �̃�, (24)

where the stiffness matrix, 𝑲𝐶 , is given by

𝑲𝐶 = 𝑩T𝑮−T
[

∫𝛺𝐸

(

𝑵𝑃 )T 𝑪𝑵𝑃 d𝛺𝐸

]

𝑮−1𝑩. (25)

In the process of obtaining 𝑲𝐶 from Eq. (25), the interpolation functions, 𝑵𝑉 , of the displacement, 𝒖ℎ ∈ ℎ(𝐸), only appear in the
boundary integrals of Eq. (22). Thus, in the VEM, it is sufficient to define the interpolation functions of the displacement on the
element edges, and there is no need to define them within the element explicitly, hence the name, ‘‘virtual element method’’.

2.5. Formulation of the stabilization term

The formulation of the stabilization term in the second term on the right-hand side of Eq. (12) has been addressed by various
methods [3,15]. In this context, we adopt a formulation based on the proposal of Artioli et al. [14].

First, we define the dimensionless element coordinates, 𝜉 and 𝜂, using the element centroid coordinates (𝑥𝑐 , 𝑦𝑐 ) and the
representative length of the element, ℎ𝐸 , as follows:

𝜉 =
𝑥 − 𝑥𝑐
ℎ𝐸

, 𝜂 =
𝑦 − 𝑦𝑐
ℎ𝐸

. (26)

Subsequently, the polynomial space,  1(𝐸), is expressed in terms of the element coordinates as follows:

 1(𝐸) = span
{(

1
0

)

,
(

0
1

)

,
(

𝜉
0

)

,
(

0
𝜉

)

,
(

𝜂
0

)

,
(

0
𝜂

)}

. (27)

Since the dimension of  1(𝐸) is 6, the displacement functions, 𝛱𝑑𝒖ℎ, on  1(𝐸) can be expressed using its basis, 𝑵𝑑 , as follows:

𝛱𝑑𝒖ℎ = 𝑵𝑑 �̂�𝑐 . (28)

Moreover, because  1(𝐸) ⊂ ℎ(𝐸), it can also be represented using the basis, 𝑵𝑉 , of ℎ(𝐸), as follows:

𝛱𝑑𝒖ℎ = 𝑵𝑉 �̃�𝑐 . (29)

Here, �̂�𝑐 ∈ R6 and �̃�𝑐 ∈ R2𝑚 are vectors representing displacement 𝛱𝑑𝒖ℎ of the consistent term in terms of bases 𝑵𝑑 and 𝑵𝑉 ,
respectively. Introducing the matrix, 𝑫 ∶ R6 → R2𝑚, representing the basis transformation of  1(𝐸) into ℎ(𝐸), expressed as

𝑫 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 𝜉1 0 𝜂1 0
0 1 0 𝜉1 0 𝜂1
1 0 𝜉2 0 𝜂2 0
0 1 0 𝜉2 0 𝜂2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 𝜉𝑚 0 𝜂𝑚 0
0 1 0 𝜉𝑚 0 𝜂𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (30)

we can express 𝑫�̂�𝑐 as

𝑫�̂�𝑐 = �̃�𝑐 . (31)

Therefore, �̃�𝑐 exists in Im𝑫. If 𝑚 > 3, matrix 𝑫 becomes a tall full-rank matrix. In this case, the vector space, R2𝑚, in which �̃� exists
can be orthogonally decomposed as follows:

R2𝑚 = Im𝑫 ⊕ Im
(

𝑰 −𝑫
(

𝑫T𝑫
)−1 𝑫T

)

, (32)

Here �̃� is the vector representing 𝒖ℎ in terms of basis 𝑵𝑉 , as 𝒖ℎ = 𝑵𝑉 �̃� ∈ ℎ(𝐸). Furthermore, because �̃�𝑐 ∈ Im𝑫, the displacement
vector, �̃�𝑠, of the stabilization term expressed in terms of the basis of ℎ(𝐸) exists in Im(𝑰 −𝑫(𝑫T𝑫)−1𝑫T). Using this, the stiffness
matrix, 𝑲𝑆 , for the stabilization term is defined as

𝑲𝑆 ∶= 𝝉
(

𝑰 −𝑫
(

𝑫T𝑫
)−1 𝑫T

)

, (33)

and the stabilization term is defined as

𝑆𝐸
(

𝒖ℎ −𝛱𝑑𝒖ℎ, 𝒗ℎ −𝛱𝑑𝒗ℎ
)

= (�̃�)T 𝑲𝑆 �̃�. (34)

Here, for any 𝒑 ∈  𝑘(𝐸), 𝛱𝑑𝒑 = 𝒑 holds. Thus, for 𝒑 and 𝒗ℎ, the second term on the right-hand side of Eq. (11) becomes
𝑎𝐸 (𝒑 −𝛱𝑑𝒑, 𝒗ℎ −𝛱𝑑𝒗ℎ) = 0. Furthermore, Eq. (34) can be rewritten as follows:

𝑆
(

𝒑 −𝛱𝑑𝒑, 𝒗ℎ −𝛱𝑑𝒗ℎ
)

= (�̃�)T 𝝉
(

𝑰 −𝑫
(

𝑫T𝑫
)−1 𝑫T

)

𝑫�̃� = (�̃�)T 𝝉 (𝑫 −𝑫) �̃� = 0. (35)
4

𝐸
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From the above, it can be confirmed that the conditions of Eq. (13) are satisfied. Moreover, if 𝑆𝐸 (𝒖ℎ, 𝒗ℎ) satisfies the inequalities,

𝑐0𝑎𝐸
(

𝒗ℎ, 𝒗ℎ
)

≤ 𝑆𝐸
(

𝒗ℎ, 𝒗ℎ
)

≤ 𝑐1𝑎𝐸
(

𝒗ℎ, 𝒗ℎ
)

, (36)

for positive constants 𝑐0 and 𝑐1 independent of the element 𝐸 and the representative length, ℎ𝐸 , we obtain

𝑎ℎ𝐸
(

𝒗ℎ, 𝒗ℎ
)

≤ 𝑎𝐸
(

𝛱𝑑𝒗ℎ,𝛱𝑑𝒗ℎ
)

+ 𝑐1𝑎𝐸
(

𝒗ℎ −𝛱𝑑𝒗ℎ, 𝒗ℎ −𝛱𝑑𝒗ℎ
)

≤ max
{

1, 𝑐1
} (

𝑎𝐸
(

𝛱𝑑𝒗ℎ,𝛱𝑑𝒗ℎ
)

+ 𝑎𝐸
(

𝒗ℎ −𝛱𝑑𝒗ℎ, 𝒗ℎ −𝛱𝑑𝒗ℎ
))

= 𝛼∗𝑎𝐸
(

𝒗ℎ, 𝒗ℎ
)

.

imilarly, by obtaining

𝑎ℎ𝐸
(

𝒗ℎ, 𝒗ℎ
)

≥ min
{

1, 𝑐0
} (

𝑎𝐸
(

𝛱𝑑𝒗ℎ,𝛱𝑑𝒗ℎ
)

+ 𝑎𝐸
(

𝒗ℎ −𝛱𝑑𝒗ℎ, 𝒗ℎ −𝛱𝑑𝒗ℎ
))

= 𝛼∗𝑎𝐸
(

𝒗ℎ, 𝒗ℎ
)

,

we confirm that the condition of Eq. (14) is satisfied. Thus, the solution to Eq. (7) is uniquely determined.
The quantity 𝝉 in Eq. (33) is a scaling factor for 𝑆𝐸 (⋅, ⋅) to satisfy the conditions in Eq. (36), which is referred to as the stabilization

parameter [16]. Moreover, as discussed in Cangiani et al. [17], using the identity matrix, 𝑰 ∈ R2𝑚×2𝑚, the stabilization parameter
is often treated as a scalar, 𝜏, through the expression:

𝝉 = 𝜏𝑰 . (37)

2.6. Formulation of the loading term

Consider the loading term, 𝐿𝐸 (𝒗ℎ), corresponding to a constant body force, 𝒇 =
{

𝑓𝑥, 𝑓𝑦
}T, subjected to element 𝐸. Since the

interpolation functions, 𝑵𝑉 , for the virtual displacements, 𝒗ℎ, are not explicitly defined within the element, the loading term is
approximated as follows:

𝐿𝐸 (𝒗ℎ) = ∫𝛺𝐸

(

𝒗ℎ
)T 𝒇d𝛺𝐸

≈

( 𝑚
∑

𝑖=1

1
𝑚

(�̃�)𝑖

)T
(

∫𝛺𝐸

𝒇d𝛺𝐸

)

= �̃�T�̄� . (38)

ere, �̄� is a column vector of dimension 𝑛 = 2𝑚, which is given by

�̄� =
|𝛺𝐸 |

𝑚
{

𝑓𝑥 𝑓𝑦 𝑓𝑥 𝑓𝑦 ⋯ 𝑓𝑥 𝑓𝑦
}T . (39)

This approximation means that each node uniformly carries the body force within the element. Notably, in the VEM, where
interpolation functions are defined along the edges of the element, the formulation of the loading term corresponding to the forces
subjected to the element edge is established similarly to that in the FEM.

3. Eigenvalue analysis of the element stiffness matrix

3.1. Physical meaning of the eigenvalues and eigenvectors of the element stiffness matrix

The eigenvalue analysis of the element stiffness matrix, 𝑲 , of the isoparametric bilinear quadrilateral element (QUAD4) affords
eight independent eigenvectors, 𝒆𝑖, along with their corresponding eigenvalues, 𝜆𝑖. The eight eigenvectors correspond to the basic
eformation modes of the bilinear quadrilateral element, as illustrated in Fig. 2. Furthermore, applying the eigenvector, 𝒆T𝑖 , from
he left to the following equation of the eigenvalue problem,

𝑲𝒆𝑖 = 𝜆𝑖𝒆𝑖, (40)

e obtain

𝒆T𝑖 𝑲𝒆𝑖 = 𝜆𝑖𝒆T𝑖 𝒆𝑖 = 𝜆𝑖. (41)

he strain energy, 𝑈 (𝒆𝑖), stored in the element due to the deformation represented by eigenvector 𝒆𝑖 is given by

𝑈 (𝒆𝑖) =
1
2
𝒆T𝑖 𝑲𝒆𝑖. (42)

Thus, the eigenvalues, 𝜆𝑖, of the element stiffness matrix can be expressed as follows:

𝜆𝑖 = 2𝑈 (𝒆𝑖). (43)

This indicates that the eigenvalues are equal to two times the amount of strain energy stored in the element when it is subjected to
the deformation represented by the corresponding eigenvector, 𝒆 .
5
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Fig. 2. Eigenmodes of the linear quadrilateral elements.

Table 1
Eigenvalues of the element stiffness matrices.

Mode 2𝑈 𝑲FEM 𝑲VEM 𝑲𝐶 𝑲𝑆

4 1.923 1.923 1.923 1.923 0.000

5 0.769 0.769 0.769 0.769 0.000
6 0.769 0.769 0.769 0.769 0.000
7 0.366 0.577 1.000 0.000 1.000
8 0.366 0.577 1.000 0.000 1.000

3.2. Eigenvalues of the element stiffness matrix

Next, we consider a plane strain square element with side length 1, using Young’s modulus 𝐸 = 1 and Poisson’s ratio 𝜈 = 0.3. We
examine the element stiffness matrix, 𝑲FEM, of the isoparametric bilinear quadrilateral (QUAD4) element with 2 × 2 point complete

auss integration in the conventional displacement-based FEM, as well as the element stiffness matrix, 𝑲VEM, for the first-order
𝑘 = 1) virtual element with stabilization parameter 𝜏 = 1. The eigenvalues and 2𝑈 values are summarized in Table 1. Here, 𝑈
epresents the theoretical strain energy corresponding to the basic deformation modes shown in Fig. 2.

.2.1. Eigenvalues of the stiffness matrix of the finite element method
From Table 1, the eigenvalues of the basic deformation modes (4, 5, and 6) of QUAD4 corresponding to isotropic tension

compression), pure shear, and uniaxial tension (compression), respectively, are identical to the 2𝑈 values. However, the eigenvalues
f the two bending modes, 7 and 8, are approximately 58% greater than the 2𝑈 values. This discrepancy indicates that an energy
arger than the theoretical value is required to induce bending deformation in QUAD4. Solving problems with significant bending
sing QUAD4 elements leads to shear locking phenomena, where the element becomes excessively stiff, resulting in a loss of
ccuracy.

.2.2. Eigenvalues of the stiffness matrix of the virtual element method
Similar to QUAD4, the eigenvalues corresponding to the basic deformation modes (4, 5, and 6) coincide with the 2𝑈 values.

onversely, the eigenvalues for the bending modes differ from the 2𝑈 values and the eigenvalues of QUAD4.
Since the VEM stiffness matrix, 𝑲VEM, comprises the consistent term stiffness matrix, 𝑲𝐶 , and the stabilization term stiffness

atrix, 𝑲𝑆 , as given by 𝑲VEM = 𝑲𝐶 + 𝑲𝑆 , eigenvalue analysis is conducted separately for 𝑲𝐶 and 𝑲𝑆 . By examining the role of
ach term through several analyses, the relationship between the stabilization parameter, 𝜏, and the eigenvalues associated with
he bending modes can be elucidated. The results of the eigenvalue analyses for 𝑲𝐶 and 𝑲𝑆 , with 𝜏 = 1, are shown in Table 1.

.2.3. Eigenvalues of the consistent term
Table 1 shows that the eigenvalues of 𝑲𝐶 for the isotropic tension (compression), pure shear, and uniaxial tension (compression)

odes (4, 5, and 6) are consistent with the 2𝑈 values. However, the eigenvalues for the bending modes are zero, indicating that
hey correspond to the zero-energy mode.
6
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Based on the formulation for the first-order element (𝑘 = 1) in Section 2, the consistent term is formulated to have a constant
train within the element. Consequently, it can represent the isotropic tension (compression), pure shear, and uniaxial tension
compression) modes corresponding to constant strain modes. However, it cannot represent the strain field for bending modes,
here the strain distribution is linear within the element. This results in a loss of stiffness for the bending modes, similar to the

eduction of the integration points to a single point in the FEM to prevent shear locking. Thus, focusing only on the consistent term
esults in rank deficiency, which leads to a singular stiffness matrix. Consequently, the solution cannot be obtained, or physically
nappropriate deformations, such as hourglass modes, may occur.

.2.4. Eigenvalues of the stabilization term
In this section, because 𝜏 = 1, we have 𝑲𝑆 = 𝑰−𝑫(𝑫T𝑫)−1𝑫T from Eq. (33). From Table 1, it is clear that 𝑲𝑆 has modes related

to bending, and the eigenvalues corresponding to the bending modes are 1. Therefore, the stabilization term adds stiffness to the
bending modes that are lost in the consistent term. Furthermore, the stabilization parameter, 𝜏, can be interpreted as a parameter
for adjusting the magnitude of the eigenvalues of the bending modes, which correspond to the strain energy.

4. Considerations on the stabilization parameter

Generally, the stabilization term is scaled by the scalar stabilization parameter, 𝜏. However, no universally accepted method for
determining the value of 𝜏 has been proposed, leaving it to the user’s discretion [18].

Cangiani et al. [17] have established the connections between the stabilization term in the VEM and the hourglass control
techniques in the FEM for the Poisson problem. They state that VEM can reasonably determine the appropriate setting of stabilization
parameters, which is an open issue in the hourglass control finite element method. In addition, they report that while VEM is robust
regarding stabilization parameters, when the stabilization parameter is too small, hourglass instability occurs. Furthermore, they
mention that for vectorial problems such as elasticity, the number of spurious singular (hourglass) modes substantially increases,
which likely makes it more difficult to draw direct links between the VEM and the hourglass control FEM.

In this section, methods for setting the stabilization parameter for plane stress elements within the framework of elastic problems
are explored. In the numerical examples that follow in this chapter, Young’s modulus is set to 1 and Poisson’s ratio is set to 0 in all
cases.

4.1. Existing proposal for stabilization parameters

Artioli et al. [14] employed the trace of the stiffness matrix, 𝑲𝐶 , of the consistent term to scale the element size and energy.
Furthermore, based on the results of parametric studies, they proposed the value of

𝜏 = 1
2

tr(𝑲𝐶 ), (44)

as the stabilization parameter. However, their numerical experiments involved models with a relatively large number of elements,
and it remains unclear whether this approach provides sufficient accuracy for coarse meshes.

Consider the physical meaning of expression (44). As discussed in the previous section, 𝑲𝐶 involves the modes corresponding to
isotropic tension (compression), pure shear, and uniaxial tension (compression), and its eigenvalues for the other modes are zero.
Therefore, tr(𝑲𝐶 ) can be expressed as

tr(𝑲𝐶 ) = 𝜆4 + 𝜆5 + 𝜆6, (45)

where 𝜆4, 𝜆5, and 𝜆6 are the eigenvalues corresponding to the isotropic tension (compression), pure shear, and uniaxial tension
(compression) modes, respectively. Furthermore, since the value of the stabilization parameter, 𝜏, for the first-order element is two
times the magnitude of the strain energy for the bending modes, Eq. (44) can be expressed as follows:

𝑈 (𝒆7) =
1
2
{

𝑈 (𝒆4) + 𝑈 (𝒆5) + 𝑈 (𝒆6)
}

. (46)

The above equation shows that Eq. (44) assigns the magnitude of the strain energy for bending as half of the total strain energy for
isotropic tension (compression), pure shear, and uniaxial tension (compression).

In addition, Reddy and Huyssteen [19] suggested defining the stabilization parameter using Lamé’s second constant, 𝜇, as

𝜏 = 𝜇. (47)

Since the theoretical value, 𝜆5, for the pure shear mode shown in Fig. 2 is given by 𝜆5 = 2𝜇, from Eq. (47), we obtain

𝑈 (𝒆7) =
1
2
𝑈 (𝒆5). (48)

Therefore, it can be understood that Eq. (47) determines the magnitude of the strain energy for the bending mode as half of the
strain energy for the shear mode.
7
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Fig. 3. A beam subjected to shear–bending.

Fig. 4. Models for the shear–bending problem.

Table 2
Normalized eigenvalues corresponding to the bending modes for each element.

VEM-1 VEM-2 VEM-3 QUAD4

1.0 4.5 1.5 1.5

4.2. Stabilization parameters based on the strain energy density

Numerical tests were conducted for the shear–bending problem of the cantilever beam shown in Fig. 3 using eight models.
The domain was divided into square elements, as shown in Fig. 4. The number of divisions for model 𝑖 (𝑖 = 1, 2,… , 8) was set to
10𝑖 and 𝑖 in the 𝑥 and 𝑦 directions, respectively. Distributed loads were applied to the free edges of the elements. The elements
employed included VEM elements with 𝜏 = 𝐸∕3 corresponding to two times the bending strain energy density for the stabilization
parameter (𝜏; VEM-1), VEM elements with 𝜏 defined by Eq. (44) (VEM-2), VEM elements with 𝜏 defined by Eq. (47) (VEM-3), and
QUAD4 elements as FEM elements. The eigenvalues corresponding to the bending modes for each element are shown in Table 2.
The eigenvalues are normalized by two times the theoretical value of the strain energy corresponding to the bending modes. Fig. 5
shows the relationship between the maximum displacement in the 𝑦 direction obtained for each model and the number of nodes in
the model. The maximum displacement is normalized with respect to the solution based on the Timoshenko beam theory.

Examining the results of VEM-1, it is evident that even a model with the fewest nodes can produce solutions with an error of less
than 1% when compared with the analytical solution. This result shows that a proper representation of the bending deformation
can be achieved by setting the stabilization parameter corresponding to the eigenvalue of the bending mode to the theoretical strain
energy value.

The results produced by VEM-3 are identical to those of QUAD4. This is because the value of 𝜇 set for 𝜏 matches the eigenvalues
associated with the bending mode in QUAD4, as shown in Table 2. In addition, the elements become rigid against bending because
the value of 𝜏 is larger than the theoretical value. In this case, when there are fewer divisions, the displacement is evaluated as
being smaller than the analytical solution.

Finally, among the elements examined, VEM-2 produced the least accurate results. As shown in Table 2, this is because the
value of 𝜏 set in VEM-2 is three times that in VEM-3 and 4.5 times that in VEM-1. Thus, VEM-2 becomes the stiffest element against
bending compared with other elements, accounting for such results.

The relationship between the number of degrees of freedom in the model and the relative error of the numerical solutions to
the analytical solution is shown in Fig. 6. From this figure, it can be confirmed that the convergence rate of the analysis error when
increasing the number of degrees of freedom is approximately 1.0 for all models.

These findings indicate that the analysis accuracy may deteriorate if the conventional method for determining the stabilization
parameter is applied to bending-dominated problems. Conversely, by defining the stabilization parameters based on the theoretical
value of the bending strain energy, these types of problems can also be accurately solved.
8



Computer Methods in Applied Mechanics and Engineering 428 (2024) 117106R. Fujimoto and I. Saiki

e
A

Fig. 5. Numerical results for the shear–bending problem.

Table 3
Normalized displacement at the center of the span for each case.

Model 1 2 3 4

Case 1 0.740 0.972 0.995 1.004
Case 2 0.047 0.145 0.393 0.714
Case 3 0.740 0.959 0.983 0.992

Proposed 0.740 0.924 0.983 0.992

4.3. Stabilization parameters considering the direction for elements with large aspect ratios

Consider the simple beam problem shown in Fig. 7 using a model that divides the elements, as shown in Fig. 8 with rectangular
lements having an aspect ratio of 10. The number of divisions for model 𝑖 (where 𝑖 = 1, 2, 3, 4) is 2𝑖 in both the 𝑥 and 𝑦 directions.
concentrated load is applied to the top node in the center of the span.
Given the results of the previous section, we start with Case 1, where the stabilization parameter is defined as 𝜏 = 𝐸

3
ℎ𝑦
ℎ𝑥

, a value
based on the strain energy density of mode 7 in Fig. 2.

Table 3 shows the relationship between the number of nodes in each model and the maximum displacement in the middle of
the span obtained in Case 1, normalized by the reference solution. The reference solution uses the result of the FEM with 25,000
QUAD4 elements, consisting of 500 elements in the 𝑥-direction and 50 elements in the 𝑦-direction.

The deformation of the simple beam by model 2 with 16 elements is shown in Fig. 9. The accuracy of the solution for Case
1, as shown in Table 3, is good. However, Fig. 9 shows the occurrence of physically inappropriate deformation where the normal
strain, 𝜀𝑦, in the 𝑦 direction oscillates. The cause of this issue is as follows: for rectangular elements, the strain energies required
to generate bending modes 1 and 2 (as shown in Fig. 2) are different. However, an incorrect energy value was assigned to bending
mode 2 because the energy value related to bending mode 1 was assigned to the stabilization parameter. In this numerical example,
the aspect ratio of the elements is 10. Consequently, the theoretical strain energy required for bending mode 2 is 100 times greater
than that required for bending mode 1. This underestimation of the stiffness of bending mode 2 to 1/100 of the theoretical value
9

results in inappropriate deformation.
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Fig. 6. Number of degrees of freedom and error for each element.

Fig. 7. Simple beam subjected to a concentrated load at the center of the span.

Fig. 8. Models for the simple beam.
10



Computer Methods in Applied Mechanics and Engineering 428 (2024) 117106R. Fujimoto and I. Saiki
Fig. 9. Deformation of Model 2 in Case 1.

Fig. 10. Deformation of Model 2 in Case 2.

Fig. 11. Deformation of Model 2 in Case 3.

Next, we analyzed Cases 2 and 3. In Case 2, the stabilization parameter was given as 𝜏 = 𝐸
3

ℎ𝑥
ℎ𝑦

, based on the theoretical strain

energy density related to bending mode 2. In Case 3, the stabilization parameter was given as 𝜏 = 𝐸
3 , which is the average of

Cases 1 and 2. The normalized maximum displacement at the center of the span obtained in each case is shown in Table 3. The
deformations by Model 2 in Cases 2 and 3 are shown in Figs. 10 and 11, respectively. From these results, it is evident that for
Case 2, although no inappropriate deformation occurs as in Case 1, the accuracy of the solution obtained is low. This is because
the stiffness of bending mode 1 is overestimated by 100 times the theoretical value by setting the strain energy of bending mode 1
equal to that of bending mode 2. In Case 3, the analysis accuracy is comparable to that in Case 1. However, it has been confirmed
that inappropriate deformation of the elements occurs, as in Case 1.

4.4. Proposal of the stabilization parameter considering the direction

The abovementioned problem cannot be solved if the stabilization parameter is represented as a scalar. As a solution, we propose
an approach that involves representing the stabilization parameter as a diagonal matrix containing directional information instead
of a scalar. The stabilization parameter is defined using two parameters: 𝜏1 =

𝐸
3

ℎ𝑦
ℎ𝑥

, which is based on the strain energy density for
mode 7, and 𝜏 = 𝐸 ℎ𝑥 , which is based on the strain energy density for mode 8. Since the rectangular element in this study has
11
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Fig. 12. Deformation of Model 2 for the proposed method.

eight degrees of freedom, the stabilization parameter, 𝝉, can be expressed as follows:

𝝉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏1
𝜏2

𝜏1 0
𝜏2

𝜏1
𝜏2

0 𝜏1
𝜏2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (49)

The condition that guarantees the stability of the solution is that the stiffness matrix corresponding to the proposed stabilization
parameter, 𝝉, is a positive definite symmetric matrix [17]. Since the matrix in Eq. 49 is symmetric and all its eigenvalues are
positive, it becomes a positive definite matrix, thus satisfying the stability condition. Using the proposed stabilization parameter,
the normalized maximum displacements obtained in each model when solving the problem shown in Fig. 7 are shown in Table 3,
and the deformation of Model 2 is shown in Fig. 12. The results confirm that the stabilization parameter in Eq. 49 yields a more
accurate solution than that obtained in Case 2, without inducing inappropriate deformation of the elements, as in Case 1 and Case
3.

In this section, we deliberated on the method for setting the stabilization parameter, a process yet to be established. By
considering the strain energy density for the deformation mode, expressed through the stabilization term, along with the directional
information, we demonstrated that precise analysis can be accomplished even for elements with a high aspect ratio.

Using stabilization terms that consider aspect ratio has been shown to be advantageous for rectangular elements with large
aspect ratio. Although numerical experiments on general polygons are not carried out in this paper, it is possible to determine the
smallest ellipse enclosing any polygon. By establishing a local coordinate system along the principal axis of the ellipse, one can
devise stabilization terms based on the lengths of the principal and minor axes in this local coordinate system using the proposed
method.

5. Concluding remarks

This study clarifies the roles of the consistent and stabilization terms, both of which are integral to the internal virtual work in
the VEM. To this end, we conducted a series of eigenvalue analyses of plane elements. Drawing on these results, we proposed a
method for defining the stabilization parameters, enabling accurate analysis irrespective of the element’s aspect ratio.

• The stabilization term of the first-order quadrilateral element introduces bending modes. The value of the stabilization
parameter corresponds to the eigenvalue of the bending modes.

• Setting the stabilization parameters based on the bending strain energy density results in a more accurate solution compared
with that obtained with the previously proposed method.

• When using a scalar stabilization parameter for elements with large aspect ratios, inappropriate deformation may occur. This
problem can be resolved by providing directional information to the stabilization parameters.

This study presents a basic investigation of the element characteristics using bilinear quadrilateral elements. Moreover, the VEM
can handle not only quadrilaterals but also arbitrary polygons, including nonconvex shapes. Therefore, future studies should focus
on extending this method to arbitrarily shaped elements.
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